1673-159X

CN 51-1686/N

深度强化学习在自动驾驶系统中的应用综述

Overview of the Application of Deep Reinforcement Learning in Autonomous Driving Systems

  • 摘要: 深度强化学习兼具深度学习对高维输入的处理能力和强化学习的决策能力,能够实现由高维的感知信息到连续动作空间输出的直接映射,非常适合处理环境复杂、交互频繁的自动驾驶任务。本文介绍了深度强化学习的主要类别以及研究进展,对自动驾驶系统关键技术进行详细剖析,重点分析了深度强化学习在自动驾驶系统环境感知、决策规划、控制执行关键技术领域的应用现状,最后展望了深度强化学习(DRL)在自动驾驶系统中的应用前景,指出研究DRL算法的可解释性提升整车功能安全等级,以及研究DRL模型的决策稳定性或利用DRL算法提升系统综合控制能力已成为未来的发展方向。

     

    Abstract: Deep reinforcement learning (DRL) has both the processing ability of deep learning (DL) for high-dimensional input and the decision-making ability of reinforcement learning (RL), and can realize direct mapping from high-dimensional perception information to continuous action space output, which is very suitable for processing the autonomous driving tasks that complex environments and frequently interacting. The paper introduces the categories and research progress of DRL, analyzes the key technologies of autonomous driving system (ADS) in detail, discusses the application status of DRL in the key technical fields of environment perception, decision planning, and control execution of ADS, looks forward to the application prospects of DRL in ADS, and points out that research on the interpretability of DRL, improving the functional safety level, and research on the decision stability of DRL model, or research on use the DRL to improve the ability of comprehensive control in ADS have become the development direction.

     

/

返回文章
返回