1673-159X

CN 51-1686/N

工业机器人可变增益自适应迭代学习控制研究

Variable Gain Adaptive Iterative Learning Control for Industrial Robots

  • 摘要: 为确保执行重复运动的工业机器人位置、速度的跟踪精度,提出一种可变增益自适应迭代学习控制算法。首先在PD反馈部分增加指数可变增益来加快算法收敛速度,然后在参数自适应部分设计广义误差函数来进一步减小轨迹跟踪误差,增强系统稳定性。通过Lyapunov函数对可变增益自适应迭代学习控制算法的收敛性进行了理论证明,最后利用仿真验证了该控制算法能有效减小机器人轨迹跟踪误差,并加快算法的收敛速度。

     

    Abstract: For industrial robots performing repetitive motion, a variable gain adaptive iterative learning control algorithm is proposed to ensure the position and velocity tracking accuracy of the robot. Firstly, exponential variable gain is added in the PD feedback part to accelerate the convergence of the algorithm. Next, a generalized error function is designed in the parameter adaptive part to further reduce the trajectory tracking error and enhance the stability of the system. The convergence of the proposed variable gain adaptive iterative learning control algorithm is theoretically proved with Lyapunov function. Finally, simulation results show that the control algorithm can effectively reduce the trajectory tracking error of the robot and accelerate the convergence of the algorithm.

     

/

返回文章
返回