1673-159X

CN 51-1686/N

基于VMD-ICOA-BiGRU模型的油浸式变压器顶层油温预测方法

A Prediction Method for Top Oil Temperature of Oil-Immersed Transformers Based on the VMD-ICOA-BiGRU Model

  • 摘要: 油浸式变压器是一种被广泛使用的变压器,其顶层油温状态是衡量变压器运行可靠、监测内部绝缘状态、推算变压器内部热点温度的重要参数,对分析变压器潜在故障、开展变压器运维、实现变压器故障早期预警具有重大意义。为提高变压器顶层油温的预测精度,提出一种基于改进浣熊算法(improved coati optimization algorithm,ICOA)优化双向门控循环递归单元(bidirectional gated recurrent unit,BiGRU)模型的油浸式变压器顶层油温预测方法:首先通过变分模态分解(variational mode decomposition,VMD)将顶层油温原始数据分解为不同频率的模态分量(intrinsic mode function,IMF),以降低非线性数据的预测难度;然后,通过引入Circle混沌映射、反向学习策略、Levy飞行策略对传统的浣熊优化算法进行改进,最大化提高优化算法的全局寻优能力及效率;最后,构建基于BiGRU的变压器顶层油温预测模型,并采用ICOA算法优化其超参数,实现更精细地捕捉时间序列数据的动态变化特征,提高油温预测模型的准确性。利用实测变压器数据,通过算例对比分析,验证了相较于传统预测模型,该方法在油浸式变压器顶层油温预测中能够取得更高的精度。

     

    Abstract: Oil-immersed transformers are the most widely used transformers, and the top oil temperature is a crucial parameter for assessing transformer operational reliability, monitoring internal insulation conditions, and estimating internal hot-spot temperatures. It holds great significance for analyzing potential transformer faults, facilitating transformer operation and maintenance, and achieving early warning of transformer failures. To enhance the prediction accuracy of transformer top oil temperature, this paper proposes a prediction method based on the improved coati optimization algorithm (ICOA) optimized bidirectional gated recurrent unit (BiGRU) for oil-immersed transformers. Firstly, the original top oil temperature data is decomposed into intrinsic mode functions (IMFs) of different frequencies using Variational Mode Decomposition (VMD), thereby reducing the prediction difficulty of nonlinear data. Subsequently, the traditional coati optimization algorithm is improved by introducing Circle chaos mapping, Levy flight strategy, and opposition-based learning, aiming to maximize the global optimization capability and efficiency of the algorithm. Finally, a BiGRU model is constructed, and its hyper parameters are optimized using the ICOA algorithm to more precisely capture the dynamic changes in the time series, significantly improving prediction accuracy. Comparative analysis of case studies demonstrates that compared to traditional prediction models, the proposed prediction model achieves higher accuracy in predicting the top oil temperature of oil-immersed transformers.

     

/

返回文章
返回