1672-8505

CN 51-1675/C

基于DeepSeek大语言模型的企业财务危机预警研究

Research on Enterprise Financial Crisis Early Warning Based on DeepSeek

  • 摘要: 在全球经济政策环境多变的VUCA时代,企业财务危机呈现出非线性传导与多源风险耦合的新特征,传统预警模型面临失效风险。为此,文章利用DeepSeek强大的语言理解和文本处理能力,提出一种基于“数据−文本−分类”转换路径的企业财务危机预警方法,该方法将包含Z值和13个财务指标的结构化财务数据转化为流畅的企业资料描述,用于微调预训练模型性能,实现财务危机准确识别。文章以147家上市食品制造企业2002—2023年财务数据为样本,研究结果显示:基于DeepSeek生成文本微调后的预训练模型在准确率、F1宏平均、召回率宏平均上均超过95%,显著优于随机森林和DeepFM等传统模型。研究结果表明:DeepSeek大模型用于企业财务危机预警是有效的,可为AI重塑财务提供理论支撑和实践参考。

     

    Abstract: In the VUCA era characterized by volatile global economic policies, corporate financial crises exhibit new features of nonlinear transmission and multi-source risk coupling, rendering traditional early warning models obsolete. To address this, we propose a financial crisis early warning method based on the “data - text - classification" transformation path, leveraging the powerful language understanding and text processing capabilities of DeepSeek. This method converts structured financial data containing Z-score and 13 financial indicators into smooth enterprise data description, which is used to fine-tune the performance of pre-training model and realize accurate identification of financial crisis. Using financial data from 147 publicly listed food manufacturing enterprises spanning the years 2002 to 2023, experimental results show that the pre-trained model fine-tuned with DeepSeek-generated text achieves over 95% accuracy, macro-F1 score, and macro-average recall, significantly outperforming traditional models such as Random Forest and DeepFM. This study highlights the effectiveness of the DeepSeek model for enterprise financial crisis early warning, offering both theoretical contributions and practical insights for advancing AI-driven financial risk management.

     

/

返回文章
返回